

Contents list s availabl e at [ScienceDirec](https://www.sciencedirect.com/science/journal/13873806) t

International Journal of Mass Spectrometry

journal homepage: www.elsevier.com/locate/ijms

Calculated rate coefficients betwee n CI -MS reagen t ions an d organosulfur compound s causin g food taints an d off-flavours

M[a](#page-0-0)njeet Bhatia ^{a, [b](#page-0-1),} *, Nicola Manini ^a, Franco Biasioli ^b, Luca Cappellin ^{b, c}

a Dipartimento di Fisica, Università Degli Studi di Milano, Via Celoria, 16, I, 20133, Milano, Italy

^b Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele All'Adige, TN, Italy

^c Dipartimento di Scienze Chimiche, Università Degli Studi di Padova, Via Marzolo 1, 35121, Padua, Italy

ARTICLE INFO

ABSTRACT

Articl e history: Received 28 February 2022 Received in revise d form 21 Apri l 2022 Accepted 24 Apri l 2022

Volatile sulfur compounds play a crucial role in the aroma profile of food and fermented beverages. We explore chemical-ionization mass spectrometry (CI-MS) ion-molecule reaction kinetics of commonly used reagent ions to a list of volatile organic sulfur compounds (VOSCs). We compute the rate coefficients of ion-molecule reactions, useful for the accurate identification and quantification of trace gases, using capture collision models based on the electric dipole moment and polarizability of the neutral VOSCs. To this aim, we evaluate molecular properties, such as the electric dipole moment, polarizability, proton affinity (PA), and ionization energy (IE) for each VOSC, by means of hybrid density functional theory (DFT) simulations. The PA and IE values are useful in the se lection of appropriate reagent ions to be used in CI-MS. We thoroughly investigate collision rate coefficients at effective temperatures and internal energies, as relevant for highly energetic proton transfer reaction mass spectrometry (PTR-MS) drift tube conditions. The data provided will be valuable for the rapid quantification of VOSC s in food an d fe rmented be verages .

© 20XX

1 . Introduction

Lear Coefficients between CI-MS reagent ions and organost

Unds causing food taints and off-flavours

Shata^{n, b}., Nicola Manini², Franco Biasioli², Luca Cappellin³², Corresponding the stress change of the control Volatile organi c su lfu r co mpounds (VOSCs) crit ica l to arom a in food an d be verages , especially thos e with reduce d form of su lfur, ar e attrib uted to micr obi olo g ica l degr adation , pr ocessing, packaging, an d stor ag e co ndition s of ingr edients an d fi nishe d products [1 – 4]. An exce ssive co nce ntr ation of co mpounds co ntainin g su lfur, whic h orig inate from na tural sources, ty p icall y co ntributes to off-flavor in many food prod ucts, particularly those involving fermentation, and leads to consumer di slike an d eventually to th e reje ction of th e products . Su lfu r bein g a larger and active hetero atom with smaller electronegativity than oxygen, it s presence greatl y infl uence s th e re l ative reacti vit y of th e co m pounds carrying sulfur, compared to their oxygen equivalent. A range of VOSC s ca n be pr esent in food an d be verages , with some co ntributin g po s itive ' fruit y ' characte r at lo w co nce ntr ation , an d ot her s impartin g unwanted 'reductive' aromas similar to "rotten eggs", "natural gas", an d " onion " at high co nce ntr ation . VOSC s co ntribut e to food arom a an d fl avo r in a co mplex way, as thei r se nsory thresholds ar e ty p icall y low, ofte n a fe w part s pe r trillion by vo lum e (pptv) . Th e lo w co nce ntr ation

of fl avo r co mpounds in food an d be verages ha s made thei r is olation , separation, and analysis problematic. Commonly present sulfur compounds , with thei r characte risti c fl avo r an d threshold, includ e hydr o ge n su lfide (rotte n eg g [100 0 ng /L]), methanethiol (p utr efa ction , onion, ru bbe r [200 0 ng /L]), dimethylsu lfide (cabbage , asparagu s [25000 ng/L]); polyfunctional thiols, such as 4-mercapto-4methylpentan-2-one (box tree, guava [3 ng/L]); S-heterocycle compounds like be nzothiazole (rubbe r [5 0 ng /L]), an d aryl th iols, such as 2-furanmethanethiol (roasted coffee [0.4 ng/L]) [[5](#page-6-1),[6\]](#page-6-2).

Th e chem ica l co mplexit y an d lo w co nce ntr ation of VOSC s in food s pu t an an alyti c challeng e in thei r dete ction an d quantification . Du e to th e high acti vit y of VOSCs, rapi d an d accurate an alyti c method s ar e re quired in orde r to mi n imize artifact s du rin g sa mpl e ha ndling, storage, and pre-treatment prior to analysis. Direct-injection mass spectrometry (DIMS) techniques, such as proton-transfer reaction mass spectrometry (PTR-MS) [[7](#page-6-3)] and selected ion flow mass spectrometry (SIFT-MS) [[8](#page-6-4)] have been po werfu l tool s in VOSC s identification an d quantification , especially for flavor analysis. In particular, PTR-MS is mostly used in sensory predictions and aroma release or quality control in food science, specifically in the analysis of fermented food products. PTR-MS is an idea l techniqu e fo r VOSC s anal ysi s sinc e it elim inate s time consumin g an d artifact -pron e sa mpl e prep aration . Moreover , PT R -MS provides fast analysis time, high detection sensitivity, and real-time

[∗] Correspondin g author . Dipartimento di Fisica , Università degl i Stud i di Milano , Vi a Celoria, 16 , I, 20133, Milano , Italy.

E -mail address: [manjeetbhatia83@gmail.co](mailto:manjeetbhatia83@gmail.com) m (M . Bhatia).

https://doi.org/10.1016/j.ij[m](https://doi.org/10.1016/j.ijms.2022.116860)s.2022.116860 1387 -3806 /© 20XX

anal ysi s of trac e -leve l co mpounds , thus a pr eferred techniqu e in envi - ronmental, food science, medical, and biological science [9–[12](#page-6-5)].

anomorphonor consideration in the set of the PT R -MS ha s been exte nsively used fo r th e characte r ization of VOSC s in various fields including food aroma analysis. Schuhfried et al. studie d chem ica l io niz ation base d fragme ntation of su lfide s usin g PT R -MS [[13\]](#page-6-6). VOSC s have been an alyze d in Swis s cheese usin g PT R -MS by Harper and co-workers [\[14](#page-6-7)]. Other similar studies devoted to sulfur co mpounds adopte d th e PT R -MS techniqu e [[11](#page-6-8) [,15](#page-6-9)]. In pa rallel, th e th e ore t ica l co mputation of rate coefficients ha s also been ca rried out, e.g. by Cappellin et al. [[16\]](#page-6-10). In the PTR-MS instrument, the H_3O^+ ions ionize the sample gas through a proton transfer reaction occurring in a drift tube chamber. Th e electric fiel d is applie d in th e drift tube cham ber, which escalates the ion kinetic energy, and as a result, water cluste r fo rmation is greatl y reduced. Th e sa mpl e ga s with higher pr oto n affinity (PA) than H_2O readily acquires a proton from H_3O^+ ion via exothermic proton-transfer reaction. The resulting protonated VOC.H⁺ ions are detected by a mass analyzer, see [Fig.](#page-1-0) 1. Then the concentration of a ne utral volatile organi c co mpoun d (VOC) is dete rmine d by ca l i bratin g th e instrument with a standard of know n co nce ntr ation an d protonated ion signals. For the most accurate results, the PTR-MS instrument should be calibrated for every single VOC in a complex gas mi xture . Ho wever , this pr ocedure is laborious, time -consuming, an d in practice, it is not possible to have accurate standards for every VOCs detected by PT R -MS . Alte rnatively , th e PT R -MS co nce ntr ation of VOCs ca n be dete rmine d by me asu rin g th e pr otonate d VOC. H ⁺ an d reagen t ion H_3O^+ counts. Given the rate coefficient of the proton-transfer reaction, which depends on the reaction kinetics occurring in the drift tube [[17\]](#page-6-11), co nce ntr ation s ca n be estimated.

Su and co-workers provided several theoretical or numerical approaches ai min g at io n -molecule co llision reaction s ta kin g plac e in drift tube chamber. Thes e approaches includ e th e averag e dipole or ientation (ADO) [\[18](#page-6-12),19], classical trajectory calculations [20], and the parametrized classical trajectory method $[21]$ to evaluate collision rate coefficients, k_c . These methods take the molecular polarizability and the electric dipole moment of the VOCs as input parameters. In particular, the parameterized trajectory model estimates collision rate coefficients as a function of the center-of-mass energy and temperature under PTR-MS drift tube conditions. Strongly exothermic ion-molecule reactions are expected to pr oceed at co llision rates, ther efore th e reaction rate coeffi cients (k) are given by the collision rates (k_c). Previous studies of H_3O^+ , NO^{+} and O_{2}^{+} reactions with several organosulfur molecules have established that most of th e reaction s occu r at or clos e to thei r co llision rate s

Fig. 1. A basic schematic of PTR-MS instrument, where H_3O^+ ion, commonly used reagen t ion, tran sfers pr oto n to ne utral mo l ecule M.

 $k \simeq k_c$ [[22](#page-6-16),[23\]](#page-6-17). However, there are molecules for which the reactions with some primary ions do not proceed at collision rates [[24\]](#page-6-18).

2 . Overview

2. 1 . PTR/CI-MS mass spectrometry

Conventional PTR-MS instrument uses H_3O^+ reagent ion as a primary pr oto n dono r to io niz e many type s of volatile co mpounds . Ho w ever , mo der n chem ica l io niz ation mass spectrom etr y (C I -MS) instru ments allow the operator to switch between different reagent ions [25–27], being capable of exploiting reagent ions other than H_3O^+ , si mpl y by passin g a di ffe ren t reagen t ga s throug h th e io n source . Fr e quently used ions in such CI-MS include NH_4^+ , NO⁺, and O_2^+ , which have been applied efficiently for the ionization of the VOSCs [[6](#page-6-2)[,14](#page-6-7),[22\]](#page-6-16). These chemical-ionization methods are more or less selective to a certain class of VOCs or have functional-group-dependent ionization mech anisms. As a result , th e functional grou p of a sp ecifi c detected VOC.H⁺ ion can be determined. Molecules such as ethylene, acetylene, halocarbons and common small-molecular weight gases, such as SO_2 cannot be ionized by the H_3O^+ ion. However, all of these substances ca n be detected an d quantified with CI -MS instrument by adop tin g an appr opr iat e reagen t io n throug h fast switchin g amon g se veral reagen t ions, in usually less than 10 s. The adoption of $NH₄$, NO⁺, and reagen t ions result s in procurin g VO C se nsiti v ities in th e same orde r as with the H_3O^+ ion. Other advantages of CI-MS include isobaric separation an d a higher leve l of sele cti vit y in VO C identification an d quantifi cation .

2. 2 . Proton -transfer reactions in CI/PTR -MS

The measurement of ion signals, preferably the ion signal ratio (proton acceptor/proton donor) by mass spectrometer, allows scientists to measure the absolute concentration of a specific constituent of a gas mixture. In PTR-MS, the reaction between H_3O^+ and an analyte sampled specie s M,

$$
H_3O^+ + M \longrightarrow MH^+ + H_2O,
$$
\n(1)

represents proton transfer from the hydronium ion to the analyte M, by a first-order pseudo reaction. Such a reaction is effective when the PA of the acceptor molecule, M, exceeds that of the H2 O mol ecule (166.7 kcal/mol) , which makes the proton transfer thermodynamically feasible. The absolute concentration [M] of the analyte in reaction $[1]$ can be determined by measuring the respective ion signals of protonated analyte, M, and the reagent ion H_3O^+ as in equation [[2](#page-6-20)] below,

$$
\frac{[RH^+]}{[H_3O^+]} = \frac{i(RH^+)}{i(H_3O^+)} = k[M]t,
$$
\n(2)

an d finally,

$$
M] = \frac{1}{k \tau} \frac{[RH^+]}{[H_3 O^+]}. \tag{3}
$$

Here k is the reaction-rate coefficient and t represents the reaction time, usually s in a typ ical PTR-MS instrument. The concentration [M] in principle can be determined without calibration simply by recording the ratio of the MH⁺ ion counts to those of the H_3O^+ , provided reaction rate coefficient k is known already. It is worthwhile to mention that dissociation and fragmentation may occur upon reaction between compounds, especially alcohols and H_3O^+ . Thereby, the product ion counts could differ from as assumed in the above equations.

Su, Bowers and Chesnavich provided many theoretical methods for estimating rate coefficients of exothermic ion-molecule reactions of type [[1\]](#page-6-0). The most successful method which predicts the rate coefficients co nsi stent with (mostl y room -temperature) expe r iment s is th e average dipole orientation (ADO) [[18](#page-6-12)[,19](#page-6-13)]. At elevated internal energies the classical trajectory method, dependent on center-of-mass energy give n by Su an d co -worker s [\[21](#page-6-15)] is to be pr eferred . Us ually , room temperatur e rate coefficients ar e employed fo r quantitative anal ysi s in PT R -MS . This is ho wever no t strictly true , sinc e io n -molecule co llision s inside th e drift tube ar e ofte n fa r more energeti c than at room temperatur e io n -molecule co llisions. Du e to th e applie d electric field, th e tran slational energy of th e co lli din g ions lead s to th e ce nte r -of-mass energy largel y exceedin g th e energy ty p ica l of therma l co llisions. A quantitative descri ption of tota l mean io n kineti c energy of th e ions in the drift tube is given by Wannier [[28](#page-6-21)[,29](#page-6-22)] and McFarland [[30\]](#page-6-23). They showed that th e tota l kineti c energy of an io n ca n be writte n as

$$
KE_{\text{ion}} = \frac{3}{2}k_{\text{B}}T + \frac{1}{2}m_{\text{ion}}v_d^2 + \frac{1}{2}m_b v_d^2,
$$
\n(4)

where m_{ion} is mass of the ion, v_d is drift velocity of the ion, and m_b is mass of the buffer gas. $k_{\rm B}$ is the Boltzmann's constant. The center-of-mass kinetic energy for an ionneutral mol ecule collision is then obtained by the following expression:

$$
KE_{\text{com}} = \frac{3}{2}k_{\text{B}}T + \left(\frac{m_n}{m_{\text{ion}} + m_n}\right)\left(KE_{\text{ion}} - \frac{3}{2}k_{\text{B}}T\right),\tag{5}
$$

In the above equation, $m_{\rm n}$ represents the mass of the neutral molecule. These highly energetic conditions inside the drift tube give rise to a higher effective temperature, $T_{\rm eff}$, for ion-molecule collisions in PTR-MS. $T_{\rm eff}$ can be obtained by equating an effective ion thermal energy with the mean center -of-mass collision energy between the ion and the buffer gas $[17]$ $[17]$. The expression for the effective temperature $T_{\rm eff}$ results in

$$
T_{\text{eff}} = T + \left(\frac{v_d^2}{3k_B}\right) \left[\frac{m_n \left(m_{\text{ion}} + m_b\right)}{m_{\text{ion}} + m_n}\right].\tag{6}
$$

Here *T* is the drift-tube temperature, and the remaining terms are as defined earlier. For normal PTR-MS conditions, i.e. $v_d = 906$ m s⁻¹, E/N =120 Td (where E/N is the ratio of electric field to gas number density and Td = Townsend = 10^{-21} V m²) and $T = 300$ and 380 K, the predicted value of T_{eff} for H_3O^+ reagent ion is typically much higher than 1000 K. The T_{eff} for the hydrogen sulfide at $T=300$ and 380 K is found to be 1316 and 1396 K, respectively. These fi gures indicate that room-temperature rates are not suitable for the highly energeti c ion -molecule collisions inside the PTR-MSdrift tube.

2. 3 . Switchable reagen t ions in CI-MS

of extended the phase and the main of the The key advantages of using H_3O^+ as a proton donor are: (i) It does no t reac t with main ai r co nstituents, as thei r PA valu e is lowe r than th e $\rm H_2O$ molecule; (ii) most common VOCs have higher PAs than $\rm H_2O$ such that pr oto n tran sfe r occurs exothe rmall y on ever y co llision . Ho wever , dealing with the analytes that possess higher PA than H_2O and separating isomers are major concerns with H_3O^+ reagent ions. These issues pave the way for other reagent ions to be used in CI-MS. Reagent ions, such as NH_4^+ , NO⁺, and O_2^+ have been applied efficiently for the ionization of th e VOSCs, Fig. 2 [6 ,14 ,22].

Ionization via NH_4^+ ions, typically called NH_4^+ -CI-MS, offers high VOC selectivity due to the higher PA of NH₃ (204.0 kcal/mol) compared to $\rm H_3O^+$ ion. This higher selectivity has been recognized as an efficient way in the identification of is obari c compounds. NO⁺ ionsionize the VOCs by electron transfer when the ionization energy (IE) of the analyte is less than that of NO molecule, i.e. 9.3 eV. The NO⁺ reagent ion, upon reacting with an analyte mol ecule, can be helpful to support isomeri c compoundssep a - ration in CI-MS analysis [\[31](#page-6-24)[,32\]](#page-6-25). For primary ions such as NH_4^+ and NO^+ reactions other than charge transfer and proton transfer are possible for VOCs [\[33](#page-6-26)–35]. For instance, cluster ion chemistry in NH_4^+ -CI-MS may take place. In order to get insights into this reaction channel, PA alone may not be sufficient, bond energies (BE, in enthalpy) of cluster ions and reaction enthalpies ΔH_t of reaction ($NH_4^+A \rightarrow AH^+ + NH_3$) should be usedinstead [\[33\]](#page-6-26). Furthermore, study of hydride abstractionand cluster formationmay provide even more insights into NO + -CI-MS reactions other than electron transfer. Future work could be undertaken to investigate reaction modes of VOSCs in CI-MS other than proton transfer and electron transfer.

Fig. 2. Common reactions of primary reagent ions with VOSCs. However, it is wort hwhil e to note that othe r mode s of reaction s ar e po ssibl e with th e selected reagen t ions base d on th e PA an d IE di ffe rence betwee n reagen t io n an d ne u tral molecule.

Similarly, the O^*_2 reagent ion reacts through electron transfer if the analyte molecule possesses lower IE than the O_2 molecule (12.1 eV) thus ionizing molecules that cannot be ionized by the H_3O^+ and NO^+ ions. Due to the large available energy compatible with the IE of the analyte and the electron affinity of the selected reagent ion, the mol ecule may fragment into many products .

3 . Computationa l method

To evaluate the following molecular properties: electric dipole moment , pola rizability, PA , an d IE of se veral VOSCs, we pe rform elec tronic -structur e si m ulation s usin g th e Gaussian16 software suit e [[36\]](#page-6-27). We opt for the B_3 LYP [[37](#page-6-28)] exchange and correlation functional, a standard approach for gas-phase systems. We expand the Kohn-Sham wave functions on an Aug-cc-PVTZ basis set for the evaluation of molecular properties of VOSCs. Presently, th e Au g -cc -PVTZ is regarded as an opti ma l basi s se t fo r high -accuracy co mputations, with th e only di sadva n tage of being computationally rather expensive. The Aug-cc-PVTZ basis se t ha s th e adva ntage of bein g co rrelation co nsi stent , i.e. this basi s se t is optimize d usin g co rrelate d methods. Overall, th e adopte d DF T method pr ovide s a good co mbination of cost vs accuracy .

We retrieved all initial molecular structures from standard data-bases, such as NIST [\[38](#page-6-29)] and PubChem [\[39](#page-6-30)]. Starting from these structures, we perform structural optimizations, minimizing the total DFT energy . In th e resultin g optimize d geom etr y of th e ne utral VOSCs, we eval uat e th e electric dipole moment , pola rizability, PA , an d IE va lues. As we target ambient conditions inside SRI/PTR-MS drift tube, gasphas e properties ar e co nsi dered , an d no enviro nme nta l effects, such as , e.g. , du e to a solution , ar e included . Base d on th e obtained electric dipole moment an d pola rizability, we co mpute th e rate coefficients of io n -molecule reaction s usin g ca pture co llision mo dels.

4 . Result s an d discussion

[Tabl](#page-3-0) e 1 report s th e co mpute d mo l e c ula r properties . Th e listed elec tric dipole moment an d pola rizabilit y va lue s ar e in clos e agre ement with literature values, where available. [Tables](#page-3-1) 2 and 3 compares our si m ulate d result s with th e fe w avai lable expe r ime nta l an d nume r ica l results. The proton transfer from H_3O^+ or NH_4^+ ions in PTR-MS drift tube is exothe rmi c when th e PA of th e an alyte mo l ecule exceed s th e PA of H_2O or NH_3 molecules, respectively. All the molecules under exploration possess higher PAs than $\rm H_2O$, thus indicating their propensity towards exothermic proton-transfer reactions. Hydrogen sulfide has a PA only slightly higher than water; when H_3O^+ is used as primary ion, ther e is a strong humi dit y depe ndenc e of th e PT R -MS me asurement s [\[40](#page-6-31)]. When proton transfer is relatively exothermic by more than approx imately 23 kcal /mol, then di ssoci ative pr oto n tran sfe r is likely to occur from [MH⁺]^{*} and leads to fragmentation and more complicated mass spectra [[41\]](#page-6-32). When investigating certain VOSCs such as, e.g, diethyl sulfide, 4-mercapto-4-methylpentan-2-ol, benzothiazole, 2-

Tabl e 1

Computed mol e c ular data, namely: electric dipole moment; dielectric polarizability; proton affinity (PA); and ionization energy (IE), for sulfur compounds of which traces may cont aminate food and beverages . DFT results obtained with a B ³LYP functional and Aug -cc-PVTZ basis, using the Gaussian suite [\[36\]](#page-6-27).

Molecule name (Formula)	CAS Number	Dipole Moment	Polarizability	PA	IE	(64400) 114.17		
						2-Methylthiolane-3-ol	149834-43-5	2.12
Molar mass		$\mu_{\rm D}$	$\alpha/(4\pi\epsilon_0)$			$(C_5H_{10}OS)$		
(atomic units)		(Debye)	(\AA^3)	kcal/mol	eV	118.20		
Hydrogen Sulfide	7783-06-4	0.99	3.71	169.1	10.4	3-Mercapto-3-	34300-942	1.84
(H ₂ S)						methylbutan-1-ol		
34.08						$(C_5H_{12}OS)$		
Methanethiol	74931	1.56	5.55	186.1	9.4	120.22		
(CH ₄ S)						Ethyl-3-	5466-06-08	2.76
48.11						mercaptopropionate		
Ethanethiol	75-08-1	1.68	7.43	190.6	9.2	$(C_5H_{10}O_2S)$		
(C_2H_6S)						134.20		
62.14						5-2-hydroxyethyl-	137-00-8	2.79
Dimethyl Sulfide	75-18-3	1.60	7.46	199.3	8.6	4-methylthiazole		
(C_2H_6S)						(C_6H_9NOS)		
62.14						143.21		
Diethyl Sulfide	352-93-2	1.64	11.34	206.3	8.3	2-Methyltetrahydro	13679-85-1	1.72
$(C_4H_{10}S)$						thiophen-3-one		
90.19						(C_5H_8OS)		
Dimethyl Disulfide	624-92-0	2.03	10.79	193.7	8.1	116.18		
$(C_2H_6S_2)$						3-Methylsulfanyl	0505-10-02	3.06
94.20						propan-1-ol		
Diethyl Disulfide	110-81-6	2.15	14.67	197.8	7.9			
$(C_4H_{10}S_2)$						$(C_4H_{10}OS)$		
122.3						106.19		
Methyl Thioacetate	153408-3	1.36	9.64	198.5	9.1	3-Mercaptohexylacatate	136954-20-6	1.47
(C_3H_6OS)						$(C_8H_{16}O_2S)$		
90.15						176.28		
3-Mercaptohexan-1-ol	51755-83-0	1.68	15.43	196.6	8.6	Ethylthioacetate	625-60-5	1.41
$(C_6H_{14}OS)$						(C_4H_8OS)		
						104.17		
134.24								
4-Mercapto-4-	19872-72-7	2.27	14.86	198.2	8.5	Table 2		
methylpentan-2-one								
$(C_6H_{12}OS)$						Comparison of the computed electric dipole moment an		
132.23						compounds using B ₃ LYP DFT functional and Aug-cc-PV		
4-Mercapto-4-	255391-65-2	2.53	15.34	204.7	8.5	able experimental/theoretical results.		
methylpentan-2-ol						Molecule	$\mu_{\rm D}$	
(C_6H_14OS)								
134.24							(Debye)	
Benzothiazole	95-16-9	1.34	15.91	220.7	8.6		This work	Literature
(C_7H_5NS)						Hydrogen Sulfide	0.99	0.98[46]
135.19								0.97 [47]
2-Furanmethanethiol	98-02-2	1.94	12.81	199.1	8.1			
(C_5H_6OS)						(H ₂ S)		
114.17						Methanethiol	1.56	1.52 [46]
2-Mercaptoethanol						(H_4S)		
(C ₂ H ₆ OS)	60-24-2	2.50	8.14	193.4	9.0	Ethanethiol	1.68	1.61 [46]
						(C_2H_6S)		
						Dimethyl Sulfide	1.60	1.55 [46]
78.14						(C_2H_6S)		1.72 [48]
Benzenemethanethiol	100-53-8	1.48	15.74	195.3	8.3	Diethyl Sulfide	1.64	1.65 [46]
(C_7H_8S)						$(C_4H_{10}S)$		
124.21						Dimethyl Disulfide	2.03	1.85 [46]
2-Mercaptoethyl acetate	5862-40-8	1.83	11.91	199.2	9.1	$(C_2H_6S_2)$		
$(C_4H_8O_2S)$								
120.17								
3-mercaptopropyl acetate	26473-61-0	1.61	13.97	199.6	9.0	methylthiolane-3-ol, and 5-2-hydroxyeth		
$(C_5H_{10}O_2S)$								
134.20						ized by much higher PAs than the water		
Cis-3,6-dimethyl-	75100-46-8	$\boldsymbol{0}$	19.83	196.1	8.0	analyze these compounds with $NH4+$ ior		
1,2,4,5-tetrathiane						spectra. However, CI-MS-NH $^{+}_{4}$ reactions		
$(C_4H_8S_4)$								
184.40						when the PA of the analyte is close to tha		
Prenyl-mercaptan	5287-45-6	1.78	13.35	198.2	8.1	Similarly, electron transfer in CI-MS		
$(C_5H_{10}S)$						occurs exothermally when the IE of the		
102.20						than the IE of the NO or O_2 molecule.		
Trans-3,6-dimethyl-	75100-47-9	0	19.11	195.3	8.3			
						Table 1, it is expected that $NO+$ ion will		
1,2,4,5-tetrathiane $(C_4H_8S_4)$						all the VOSCs with exothermal reactions the molecules that possess higher IEs that		

Tabl e 2

Compar ison of the computed electric dipole moment and polarizability values of volatile sulfur compounds using B ³LYP DFT functional and Aug -cc-PVTZ basi s set combination with the avail able exper imental/the oret ical results.

methylthiolane-3-ol, and 5-2-hydroxyethyl-4-methylthiazole characterized by much higher PAs than the water molecule, it is worthwhile to analyze these compounds with NH_4^+ ions, thereby obtaining cleaner spectra. However, CI-MS- NH_4^+ reactions can proceed by association when the PA of the analyte is close to that of NH_3 .

Similarly, electron transfer in CI-MS from NO^+ or O_2^+ reagent ions occurs exothe rmall y when th e IE of th e an alyti c co mpoun d is lowe r than the IE of the NO or O_2 molecule. From the IE data reported in [Tabl](#page-3-0)e 1, it is expected that $NO⁺$ ion will efficiently transfer electron to al l th e VOSC s with exothe rma l reaction s at ever y co llision , except fo r the molecules that possess higher IEs than NO, for example hydrogen su lfide an d methanethiol . In such cases, ho wever , othe r reaction path -

Tabl e 3

Comparison of the computed proton affinity (PA) and ionization energy (IE) values with the available experimental/theoretical results.

ways such as hydrid e abstra ction ma y occur. Fo r thes e larg e -IE co m pounds, O_2^+ ions can be used instead.

The molecular data reported in [Tabl](#page-3-0)e 1 are essential for the calculation of th e rate coefficients fo r io n -molecule co llision reaction s that co mmonl y occu r in PTR/CI -MS drift tubes. Co llision -base d mo del s ar e ofte n used fo r th e dete rmination of rate coefficients , sinc e a direct ex pe r ime nta l dete rmination of rate coefficients is ofte n laborious, time consuming, and even problematic, leading to errors up to \pm 30% [42–[44\]](#page-6-36). In the ion-nonpolar molecule, long-range ion–induced-dipole inte raction s do m inate . Th e long -rang e pote ntial in th e io n –induce d dipole is give n by

$$
V(r) = -\frac{1}{4\pi\epsilon_0} \frac{\alpha q^2}{2r^4},
$$
\n(7)

where $q = z$ q_e is the charge of the ion (q_e is the elementary charge in Coulomb); α is the polarizability of the neutral species, r is the distance between the centers of mass of the ion and neutral mol ecule . The rate coefficient (capture) is given by the Langevin theory, and the expression reads as

$$
k_{\text{lang}} = \sqrt{\frac{\pi \alpha q^2}{\mu \epsilon_0}}.
$$
\n(8)

Here μ is the reduced mass of the reactants, and ε_0 is the permittivity of free space. The rates obtained from the Langevin model, equation [8], seriously underestimate the observed rate coefficients, and are not suitable for reactions involving polar mol ecules. For polar mol ecules, a more refined model includesion -dipole forcesin addition to the ion–induced -dipole forces . In this case, the interaction potential takes the form

$$
V(r,\theta) = -\frac{1}{4\pi\epsilon_0} \frac{\alpha q^2}{2r^4} - \frac{1}{4\pi\epsilon_0} \frac{q\mu_D}{2r^2} \cos \theta.
$$
 (9)

Here $\mu_{\rm D}$ is the dipole moment of the neutral molecule and θ is the angle the dipole makes with the line of centers of the collision. The long range forces, ion-induced dipole and ion -permanent dipole forces contribute toward increasing rate coefficients . However, the extent of their contribution largely depends on the electric dipole moment.

Co nsi derin g th e energeti c enviro nment inside CI -MS drift tube , rate s obtained at therma l co ndition s ca nno t be applic abl e as such in practica l appl ications. Unde r th e PTR/CI -MS highly energeti c co nditions, th e rate coefficients can be obtained by parameterized trajectory calcula-tions as given by Su [\[21](#page-6-15)] appropriate at center-of-mass kinetic energy and higher effective temperature. The parametrized rates are expressed by th e fo llo win g equation s

$$
\frac{k_{\text{cap}}}{k_{\text{Lang}}} = K_c(\tau, \varepsilon),\tag{10}
$$

wher e

$$
=\frac{\mu_{\rm D}}{\sqrt{\alpha T}},\tag{11}
$$

an d

 τ

$$
\varepsilon = \frac{\mu_{\rm D}}{\sqrt{\alpha KE_{\rm com}}}.\tag{12}
$$

Su an d co -worker s si m ulate d over 10 0 sy stems , pr ocessin g 6000 tr a jectories. The following parametric equation was proposed to fit the si m ulation data :

$$
K_c(\tau, \varepsilon) = \frac{1 + c_1 \tau^{0.4} \varepsilon^2 S + c_2 (1 - S)}{\times \sin [c_3 [c_4 + \ln(\tau)]] \tau^{0.6} \sqrt{(\varepsilon - 0.5)}},
$$
(13)

where $c_1 = 0.727143$, $c_2 = 3.71823$, $c_3 = 0.586920$ and c_4 = 4.97894. The quantity

$$
S = \begin{cases} \exp[-2(\varepsilon - 1.5)] & \text{for } \varepsilon > 1.5\\ 1 & \text{for } \varepsilon \le 1.5 \end{cases}
$$
 (14)

The results obtained from the parametrized trajectory model are collected in [Tabl](#page-5-0)e 4. The rate coefficients k_{cap} dependent on center-ofmass energy are computed at standard PTR-MS working temperatures: 300 and 380 K, and reduced electric field $E/N = 120$ Td, under air as a buffer gas. However, the E/N values may vary from 80 to 155 Td for ty p ica l PT R -MS instruments.

The obtained rate coefficients decrease marginally with temperature, adherent to the theory, as well as observed in a few available ex-periments [[45\]](#page-6-37). k_{cap} is also found to vary with the applied electric field or reduce d electric field, which, in turn , increase s th e ce nte r -of-mass ki neti c energy in th e co llision betwee n th e io n an d th e mo l ecule . Th e variation of the reagent-ion temperature and ion translational energy (through E/N) pr ovide s a degree of co ntrol of th e overal l ce nte r -of-mass co llision energy . Th e co mpute d rate coefficients decrease with th e ce n te r -of-mass kineti c energy du e to th e faster co llision .

Importantly, the computed rates, asin [Table](#page-5-0) 4 increase significantly with both the permanent dipole moment and the polarizability of the neutral species. VOSCs, such as 3-methylsulfanylpropan-1-ol and 5-2-hydroxyethyl-4-methylthiazole, possess relatively large dipole moments (greater than 2. 5 Debye) resulting in rather large rate coeffi cients. In contrast, the smaller dipole moments (<1 Debye) of hydrogen sulfide and 2methyl-3 -furanthiol lead to smaller rate coefficients for these mol ecules. *Cis* -3, 6 dimethyl-1,2,4,5-tetrathiane and *trans*-3,6-dimethyl-1,2,4,5-tetrathiane have exactly vanishing dipole moments. The rate coefficient for these species is essentially given by the Langevin rates due to the lack of an ion-dipole interaction ($\propto \mu_{\rm D}$) contribution, as in equation [[7](#page-6-3)] rather than [[9\]](#page-6-5).

When compared with experimental observations, the results of the rate coefficients from equation [\[13](#page-6-6)] were in good agre ement (5 % error) fo r io n -molecule co llision s with ce nte r -of-mass energies rangin g from therma l to se veral eV an d over a te mpe r ature rang e 50 –1000 K [[21\]](#page-6-15). This reassures us that the rate coefficients obtained by means of the paramete rized -trajectory method ar e reliable even at el evate d te mpe r a ture and internal-energy conditions.

Additionally, we compute the effective temperature, $T_{\rm eff}$, from equation [[6](#page-6-2)] under the standard working temper atures 300 and 380 K, considered in the present work. Also, collision rates at different E/N values in the 80–180 Tdrange are obtained for the reported reagent ions. The results are collected as supplementary material. At higher T_{eff} , the rates vary marginally, and in many cases, we obtain practically the same rate coefficients at two different temperatures. Thus, even in the case of a significant uncertainty about the actual temperature of the colliding species, the final reaction rates

Tabl e 4

Predicted rate coefficients (k_{cap}) at center-of-mass energy under ambient PTR/SRI-MS drift tube settings from parametrized classical trajectory method for sulfur compounds commonly present in food and beverages. Computed rates are expressed in unit of 10^{-9} cm³ s⁻¹.

Molecule name	T		$\mathbf{k}_{\rm cap}$			3- 300	2.66
						380 Mercaptohexylacatate	2.64
(Formula)	K	H_3O^+	NH ₄	$NO+$	${\rm O}_2^+$	$(C_8H_{16}O_2S)$	
Hydrogen Sulfide	300	1.65	1.67	1.43	1.41	Ethylthioacetate 300	2.24
(H ₂ S)	380	1.61	1.64	1.39	1.38	(C_4H_8OS) 380	2.22
Methanethiol	300	2.18	2.23	1.85	1.80		
(CH ₄ S)	380	2.12	2.16	1.80	1.75	would be affected only marginally, with the result	
Ethanethiol	300	2.29	2.34	1.90	1.86	by this method remains reliable.	
(C_2H_6S)	380	2.23	2.28	1.86	1.81		
Dimethyl Sulfide	300	2.22	2.26	1.86	1.82		
(C_2H_6S)	380	2.17	2.21	1.82	1.78	5. Concluding remarks	
Diethyl Sulfide	300	2.37	2.44	1.95	1.91		
$(C_4H_{10}S)$	380	2.34	2.40	1.92	1.88	We evaluate and report CI-MS rate co	
Dimethyl Disulfide	300	2.61	2.67	2.12	2.06	actions associated with a number of rea	
$(C_2H_6S_2)$	380	2.54	2.60	2.08	2.02	and O_2^+) to a comprehensive list of VOS	
Diethyl Disulfide	300	2.79	2.86	2.26	2.19	beverages. The electric dipole moment ar	
$(C_4H_{10}S_2)$	380	2.74	2.81	2.22	2.15		
Methyl Thioacetate	300	2.11	2.16	1.75	1.70	VOSCs are the input ingredients for the ra	
(C_3H_6OS)	380	2.09	2.13	1.73	1.68	compute these parameters by DFT simula	
	300	2.55	2.62	2.08	2.02	ters are in good agreement with the avail	
3-Mercaptohexan-1-ol	380	2.52	2.59	2.06	2.00	values. We additionally provide molecu	
(C_6H_14OS)						and IE, useful in the determination of the	
4-Mercapto-4-	300	2.86	2.95	2.31	2.24	reaction, and correspondingly for the sel	
methylpentan-2-one	380	2.80	2.88	2.27	2.20		
$(C_6H_{12}OS)$						ions in CI-MS techniques. For example, or	
4-Mercapto-4-	300	3.08	3.16	2.45	2.39	via $NH4+-CI-MS$ is advantageous for the	
methylpentan-2-ol	380	3.00	3.08	2.40	2.34	where ionization with H_3O^+ produces mu	
(C_6H_14OS)						these rate coefficients applying state-of-tl	
Benzothiazole	300	2.46	2.51	2.01	1.95	frequently used for highly energetic PTR-	
(C ₇ H ₅ NS)	380	2.44	2.50	2.00	1.94		
2-Furanmethanethiol	300	2.59	2.65	2.09	2.04	trized trajectory method at commonly 6	
(C ₅ H ₆ OS)	380	2.54	2.61	2.06	2.01	tions. Generally, rates obtained by parar	
2-Mercaptoethanol	300	2.97	3.04	2.45	2.40	center-of-mass energy are best suited for	
(C_2H_6OS)	380	2.85	2.92	2.36	2.30	of PTR-MS drift tube.	
Benzenemethanethiol	300	2.51	2.57	2.05	1.99	The PTR/SRI-MS reaction kinetics dat	
(C_7H_8S)	380	2.49	2.55	2.04	1.98	make available a useful resource for dete	
2-Mercaptoethyl	300	2.46	2.51	1.99	1.93		
acetate	380	2.42	2.47	1.96	1.90	VOSCs. They can thus find a broad applica	
$(C_4H_8O_2S)$						of several food products.	
3-mercaptopropyl	300	2.44	2.50	1.98	1.92		
acetate	380	2.42	2.47	1.96	1.90	Author contributions	
$(C_5H_{10}O_2S)$							
Cis-3,6-dimethyl-	300	2.50	2.56	2.04	1.99	M.B. made all simulations and arrange	
1,2,4,5-tetrathiane	380	2.50	2.56	2.04	1.99	vised the theoretical modeling, F.B. and L	
$(C_4H_8S_4)$							
Prenyl-mercaptan	300	2.55	2.61	2.08	2.03	the compounds worth investigating. All a	
$(C_5H_{10}S)$	380	2.51	2.57	2.02	2.01	the manuscript.	
Trans-3,6-dimethyl-	300	2.45	2.52	2.01	1.95		
1,2,4,5-tetrathiane	380	2.45	2.52	2.01	1.95	Declaration of competing interest	
$(C_4H_8S_4)$							
2-Methyl-3-furanthiol	300	2.12	2.18	1.75	1.71	The authors declare that they have n	
(C_5H_6OS)	380	2.12	2.17	1.75	1.70		
2-Methylthiolane-3-ol	300	2.69	2.76	2.17	2.12	interests or personal relationships that of	
$(C_5H_{10}OS)$	380	2.63	2.70	2.13	2.08	ence the work reported in this paper.	
3-Mercapto-3-	300	2.55	2.62	2.07	2.02		
methylbutan-1-ol	380	2.52	2.58	2.04	1.99	Acknowledgements	
$(C_5H_{12}OS)$							
Ethyl-3-	300	3.23	3.32	2.57	2.49	The authors are grateful to CINECA fo	
mercaptopropionate	380	3.13	3.21	2.50	2.42		
$(C_5H_{10}O_2S)$						sources through the Iscra C "k-ADO" pr	
5-2-hydroxyethyl-	300	3.27	3.37	2.60	2.51	Fondazione Edmund Mach (ADP, 2018) i	
4-methylthiazole	380	3.17	3.27	2.53	2.45		
(C_6H_9NOS)						Appendix A. Supplementary data	
2-Methyltetrahydro	300	2.41	2.47	1.96	1.91		
thiophen-3-one	380						
		2.37	2.44	1.93	1.88	Supplementary data to this article ca	
(C_5H_8OS)						doi.org/10.1016/j.ijms.2022.116860.	
3-Methylsulfanyl	300	3.50	3.59	2.84	2.76		
propan-1-ol	380	3.36	3.45	2.73	$2.65\,$		

would be affected only marginally, with the result that the quantification of the VOSCs by this method remains reliable .

5 . Concluding remark s

We eval uat e an d report CI -MS rate coefficients fo r io n -molecule re actions associated with a number of reagent ions $(H_3O^+, NH_4^+, NO^+,$ and O_2^+) to a comprehensive list of VOSCs related to spoiled food and be verages . Th e electric dipole moment an d pola rizabilit y of th e ne utral VOSC s ar e th e inpu t ingr edients fo r th e rate -coefficien t ca lculations. We co mpute thes e parameters by DF T si m ulations. Th e co mpute d parame ters are in good agreement with the available experimental/theoretical values. We additionally provide molecular properties such as the PA an d IE , us efu l in th e dete rmination of th e exothe rma l nature of a give n reaction , an d co rrespon dingl y fo r th e sele ction of appr opr iat e reagen t ions in CI -MS techniques . Fo r example, on e coul d decide that io niz ation via $NH₄⁺-CI-MS$ is advantageous for the quantification of such species where ionization with H_3O^+ produces multiple fragments. We evaluate thes e rate coefficients appl yin g stat e -of-th e -ar t ca pture co llision model, fr equentl y used fo r highly energeti c PT R -MS co nditions, usin g para m e trized tr aje ctory method at co mmonl y exploite d expe r ime nta l co ndi tions. Ge nerally , rate s obtained by para m etrized tr aje ctory method at ce nte r -of-mass energy ar e best suited fo r th e high effe ctive te mpe r ature of PT R -MS drift tube .

The PTR/SRI-MS reaction kinetics data reported in the present work make available a useful resource for determining the concentrations of VOSCs. They ca n thus find a broa d appl ication in th e qualit y assessment of se veral food products .

Author contribution s

M.B. made all simulations and arranged the data tables. N.M. supervised the theoretical modeling, F.B. and L.C. suggested the problem and the compounds worth investigating. All authors contributed to writing th e ma n uscript .

Declaratio n of competin g interest

The authors declare that they have no known competing financial inte rests or pe rsona l relationship s that coul d have appeared to infl u ence th e work reported in this paper.

Acknowledgements

The authors are grateful to CINECA for providing computational resource s throug h th e Iscr a C " k -AD O " pr oject . Fina ncial su pport from Fo ndazion e Edmund Mach (ADP , 2018) is also highly appr eciated .

Appendix A . Supplementar y data

Su ppl eme ntary data to this articl e ca n be foun d online at [https://](https://doi.org/10.1016/j.ijms.2022.116860) doi.org/10.1016/j.ijms.2022.116860 .

References

- [1] K. Ridgway, S. Lalljie, R. Smith, Analysis of food taints and [off-avours](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref1) - a review, Food Addit. [Contam.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref1) 27 (2010) 146–168.
- [2] M. Qian, X. Fan, K. [Mahattanatawee,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref2) In Volatile Sulfur Compounds in Food; ACS [Symposium](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref2) Series, Oxford University Press USA, 2012.
- [3] M.E. Smith, M. Bekker, P. Smith, E. Wilkes, Sources of volatile sulfur [compounds](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref3) in wine, Aust. J. Grape Wine Res. 21 [\(2015\)](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref3) 705–712.
- [4] In [Understanding](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref4) Wine Chemistry (Chapter 10), John Wiley & Sons, Ltd, 2016, [pp.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref4) 88–98.
- [5] J. Goode, Mercaptans and Other Volatile Sulfur [Compounds](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref5) in Wine, Harpers Wine & Spirit [Weekly,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref5) 2006.
- [6] D. Fracassetti, In Occurrence and Analysis of Sulfur [Compounds](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref6) in Wine, [IntechOpen,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref6) 2018.
- [7] A. Hansel, A. Jordan, R. [Holzinger,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref7) P. Prazeller, W. Vogel, W. Lindinger, Proton transfer reaction mass [spectrometry:](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref7) on-line trace gas analysis at the ppb level, Int. J. Mass [Spectrom.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref7) Ion Process. 149–150 (1995) 609–619.
- [8] P. Španěl, D. Smith, Selected ion ow tube: a technique for [quantitative](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref8) trace gas analysis of air and breath, Med. Biol. Eng. [Comput.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref8) 34 (1996) 409–419.
- [9] G. Eerdekens, L.N. [Ganzeveld,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref9) J. Vilà -Guerau de Arellano, T. Klüpfel, V. Sinha, Flux estimates of isoprene, [methanol](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref9) and acetone from airborne PTR-MS [measurements](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref9) over the tropical rainforest during the GABRIEL 2005 campaign, [Atmos.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref9) Chem. Phys. 9 (2009) 4207–4227.
- [10] J.D. Pleil, A. Hansel, J. [Beauchamp,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref10) Advances in proton transfer reaction mass [spectrometry](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref10) (PTR-MS): applications in exhaled breath analysis, food science, and [atmospheric](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref10) chemistry, J. Breath Res. 13 (2019) 039002.
- [11] M.-Á. Pozo-Bayón, J.-P. Schirlè -Keller, G.A. Reineccius, [Determining](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref11) specific food volatiles [contributing](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref11) to PTR-MS ion profiles using GC-EI-MS, J. Agric. Food Chem. 56 [\(2008\)](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref11) 5278–5284.
- [12] I.A. [Hanouneh,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref12) N.N. Zein, F. Cikach, L. Dababneh, D. Grove, N. Alkhouri, R. Lopez, R.A. Dweik, The [breath-prints](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref12) in patients with liver disease identify novel breath bio-markers in alcoholic hepatitis, Clin. [Gastroenterol.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref12) Hepatol. 12 (2014) 516–[523.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref12)
- [13] E. Schuhfried, M. Probst, J. Limtrakul, S. Wannakao, E. Aprea, L. Cappellin, T. Märk, F. Gasperi, F. Biasioli, Sulfides: chemical ionization induced fragmentation studied with Proton Transfer Reaction-Mass Spectrometry and density functional calculations, J. Mass Spectrom. 48 (2013) 367–378.
- [14] W. Harper, N. Kocaoglu-Vurma, C. Wick, K. Elekes, V. Langford, Analysis of volatile sulfur compounds in Swiss cheese using selected ion flow tube mass spectrometry (SIFT-MS), ACS (Am. Chem. Soc.) Symp. Ser. 1068 (2011) 153–181.
- [15] V. Perraud, S. Meinardi, D. Blake, B. Finlayson-Pitts, Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and off-line GC-FID, Atmos. Meas. Tech. Discuss. 8 (2015) 13157–13197.
- [16] L. Cappellin, M. Probst, J. Limtrakul, F. Biasioli, E. Schuhfried, C. Soukoulis, T.D. Märk, F. Gasperi, Proton transfer reaction rate coefficients between H_3O^+ and some sulphur compounds, Int. J. Mass Spectrom. 295 (2010) 43–48.
- [17] A.M. Ellis, C.A. Mayhew, In Proton Transfer Reaction Mass Spec- Trometry Principles and Applications, John Wiley & Sons, Chichester, United Kingdom, [2014.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref17)
- [18] T. Su, M.T. Bowers, Theory of ion-polar molecule collisions. Comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of diuorobenzene and dichloroethylene, J. Chem. Phys. 58 (1973) 3027–3037.
- [19] T. Su, M. T. Bowers, Ion-Polar molecule collisions: the effect of ion size on ionpolar molecule rate constants; the parameterization of the average-dipoleorientation theory, Int. J. Mass Spectrom. Ion Phys. 12 (1973) 347–356.
- [20] T. Su, W.J. Chesnavich, Parametrization of the ion-polar molecule collision rate constant by trajectory calculations, J. Chem. Phys. 76 (1982) 5183–5185.
- [21] T. Su, Parametrization of kinetic energy dependence of ion–polar molecule collision rate constants by trajectory calculations, J. Chem. Phys. 100 (1994) 4703.
- [22] P. Španěl, D. Smith, Selected ion ow tube studies of the reactions of H_3O^+ , NO⁺ and O_2^+ with some organosulphur molecules, Int. J. Mass Spectrom. 176 (1998) 167–176.
- [23] L. Cappellin, T. Karl, M. Probst, O. Ismailova, P.M. Winkler, C. Soukoulis, E. Aprea, T.D. Märk, F. Gasperi, F. Biasioli, On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry, Environ. Sci. Technol. 46 (2012) 2283–2290.
- [24] A. Midey Jr, S. Williams, T. Miller, A. Viggiano, Reactions of O_2^+ , NO⁺ and H₃O⁺ with methylcyclohexane (C_7H_{14}) and cyclooctane (C_8H_{16}) from 298 to 700 K, Int. J. Mass Spectrom. 222 (2003) 413–430.
- [25] A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, J. Herbig, L. Märk, R. Schottkowsky, H. Seehauser, P. Sulzer, T. Märk, An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion apability $PTR + SRI-MS$, Int. J. Mass Spectrom. 286 (2009) 32–38.
- [26] P. Sulzer, A. Edtbauer, E. Hartungen, S. Jürschik, A. Jordan, G. Hanel, S. Feil, S.

Jaksch, L. Märk, T.D. Märk, From Conventional [Proton-Transfer-Reaction](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref26) Mass [Spectrometry,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref26) PTR-, 2012.

- [27] M. Lanza, W. Acton, K. Breiev, S. Jürschik, R. Gutmann, A. Jordan, E. [Hartungen,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref27) G. Hanel, J. Herbig, L. Märk, C. Mayhew, T. Märk, P. Sulzer, In [Selected-Reaget-](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref27)Ionization Mass Spectrometry (SRI-MS): Advancements in [Instrumentation](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref27) and Novel [Applications,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref27) 2015.
- [28] G.H. [Wannier,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref28) On the motion of gaseous ions in a strong electric field, I. Phys. Rev. 83 [\(1951\)](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref28) 281–289.
- [29] G.H. [Wannier,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref29) Motion of gaseous ions in strong electric fields, Bell Syst. Tech. J. 32 (1953) 170–254.
- [30] M. McFarland, D.L. Albritton, F.C. Fehsenfeld, E.E. Ferguson, A.L. Schmeltekopf, Flow-drift technique for ion mobility and ionmolecule reaction rate constant measurements. II. Positive ion reactions of N⁺, O⁺, and H_{[2](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref30)}⁺ with O₂ and O⁺ with N₂ from thermal to ~ 2 eV, J. Chem. Phys. 59 (1973) 6620–6628.
- [31] K. Buhr, S. van Ruth, C. Delahunty, Analysis of volatile avour compounds by Proton Transfer Reaction-Mass Spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds, Int. J. Mass Spectrom. 221 (2002) 1–7.
- [32] K.P. Wyche, R.S. Blake, K.A. Willis, P.S. Monks, A.M. Ellis, Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry, Rapid Commun. Mass Spectrom. 19 (2005) 3356–3362.
- [33] E. Canaval, N. Hyttinen, B. Schmidbauer, L. Fischer, A. Hansel, NH_{[4](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref33)}^{[+](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref33)} association and proton transfer reactions with a series of organic molecules, Front. Chem. 7 (2019).
- [34] L. Cappellin, S. Makhoul, E. Schuhfried, A. Romano, J. Sanchez del Pulgar, E. Aprea, B. Farneti, F. Costa, F. Gasperi, F. Biasioli, Ethylene: absolute real-time highsensitivity detection with PTR/SRI-MS. The example of fruits, leaves and bacteria, Int. J. Mass Spectrom. 365–366 (2014) 33–41.
- [35] A.R. Koss, C. Warneke, B. Yuan, M.M. Coggon, P.R. Veres, J.A. de Gouw, Evaluation of NO⁺ reagent ion chemistry for online measurements of atmospheric volatile organic compounds, Atmos. Meas. Tech. 9 (2016) 2909–2925.
- [C](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref17)oncernent and [O](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref32)nto Valence Solution (and the space of the space [36] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. [Williams-Young,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. [Ranasinghe,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) V.G. [Zakrzewski,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. [Hasegawa,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. [Montgomery](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. [Staroverov,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) T.A. Keith, R. Kobayashi, J. Normand, K. [Raghavachari,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. [Ochterski,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) R.L. Martin, K. [Morokuma,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16 Revision C.01, Gaussian Inc., [Wallingford](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref36) CT, 2016.
	- [37] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti [correlation-energy](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref37) formula into a [functional](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref37) of the electron density, Phys. Rev. B 37 (1988) 211–212.
	- [38] NIST data-base., <https://webbook.nist.gov/chemistry/>, Accessed: 30- 08-2020.
	- [39] PubChem data-base., [https://pubchem.ncbi.nlm.nih.gov/,](https://pubchem.ncbi.nlm.nih.gov/) Accessed: 30-08- 2020.
	- [40] R. Li, C. Warneke, M. Graus, R. Field, F. Geiger, P.R. Veres, J. Soltis, [S.-M.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref40) Li, S.M. Murphy, C. Sweeney, G. Pètron, J.M. Roberts, J. de Gouw, [Measurements](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref40) of hydrogen sulfide (H[2](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref40)S) using PTRMS: calibration, humidity [dependence,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref40) inter[comparison](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref40) and results from field studies in an oil and gas production region, [Atmos.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref40) Meas. Tech. 7 (2014) 3597–3610.
	- [41] T. Fujii, In Ion-Molecule Attachment Reactions: Mass [Spectrometry,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref41) Springer US, [2015.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref41)
	- [42] G.J. Francis, P.F. Wilson, D.B. Milligan, V.S. [Langford,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref42) M.J. McEwan, GeoVOC: a SIFT-MS method for the analysis of small linear [hydrocarbons](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref42) of relevance to oil [exploration,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref42) Int. J. Mass Spectrom. 268 (2007) 38–46.
	- [43] P. Španěl, T. Wang, D. Smith, A selected ion ow tube, SIFT, study of the [reactions](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref43) of H_{[3](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref43)}O^{[+](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref43)}, NO⁺ and $O₂$ $O₂$ $O₂$ ^{[+](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref43)} ions with a series of diols, Int. J. Mass [Spectrom.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref43) 218 (2002) 227–236.
	- [44] P. Spanel, T.S. Wang, D. Smith, A selected ion ow tube, SIFT, study of the [reactions](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref44) of $H₂O⁺$ $H₂O⁺$ $H₂O⁺$, NO⁺ and O_2 O_2 ^{[+](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref44)} ions with a series of diols, Int. J. Mass [Spectrom.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref44) 218 (2002) 227-236.
	- [45] Harrison, A. G., In, Harrison, A. G., Ed.; Taylor & Francis: 1992, pp 71–90.
	- [46] W.M. Haynes, In CRC [Handbook](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref46) of Chemistry and Physics, 100 Key Points, 96th [Edition,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref46) CRC Press, 2015.
	- [47] C.L. Yaws, In [Thermophysical](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref47) Properties of Chemicals and Hydrocarbons, Elsevier [Science,](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref47) 2008.
	- [48] J. Zhao, R. Zhang, Proton transfer reaction rate constants between [hydronium](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref48) ion (H[3](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref48)O⁺) and volatile organic [compounds](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref48) (VOCs), Atmos. Environ. 38 (2004) 2177–[2185.](http://refhub.elsevier.com/S1387-3806(22)00065-3/sref48)